Why Should You Opt For Miracle Electronics’ SMPS Transformers?

Home and office appliances seem to be admired by users when they can offer maximum performance while maintaining the lowest possible power consumption. This is possible when switched mode power supplies (SMPS) are used that can convert power using switching devices that are turned on and off at high frequencies, and inductors/capacitors to supply power when the switching device is in a non-conduction state. Thus, you can create an efficient power output with an SMPS transformer. And, when you purchase one from Miracle Electronics, the leading SMPS transformer manufacturer in India, you can ensure its robustness and reliability.

smps

Continue reading

How To Test A Switch Mode Power Supply Transformer?

Switch Mode Power Supply (SMPS) transformers are flexible and used in a variety of industries like aerospace, biomedical, telecommunications, and automation controls. The major applications for these transformers include converters, inverters, switching regulators, low power isolation power supplies, high Q filters, and RFI filters. With so many applications using these transformers, it is important that you test your transformers periodically so as to avoid any faults or breakdowns.

smpt

Continue reading

Understanding And Selecting The Best Single Phase Transformer

Transformers are those electrical devices that convert higher voltages into lower voltages to make it ideal for household usage. They transfer electrical energy between circuits without modifying the frequency. With a wide variety of transformers available, each one differs in terms of their design. However, each transformer follows the basic principle of Faraday’s Law that was invented in 1831 by an English physicist named Michael Faraday. This law explains how most electrical motors, generators, inductors, and transformers work by relating the electric circuit and magnetic field.

Continue reading

All You Would Want To Know About Current Transformers

A current transformer is a type of transformer that measures alternating current (AC) by producing an AC in its secondary which proportional to the AC in its primary. When the current to be measured or the system voltage of the circuit is too high, current transformers are used to provide an isolated lower current in its secondary, which is proportional to the current in the primary circuit. The induced secondary current produced is then suitable to measure instruments and process electronic equipment. This is the reason why current transformers are popularly used for metering and protective relays in the electrical power industry.

current-transformer

Continue reading

All You Want To Know About Toroidal Transformer Inrush Current

Toroidal transformer inrush current is a spike in current that arises when you initially turn your transformer on. When the transformer is switched on, the initial source of power sends a gush of current to the device that can cause damage to the power supply. If not managed appropriately, such inrush current can cause serious damage like tripping of circuit breakers and blowing off of fuses. This can ultimately result in complete failure of the transformer itself. The inrush current actually affects the transformer core’s magnetic property that causes energy loss. Therefore, it is very essential to reduce the initial inrush current.

triodal

Continue reading

What Are The Requirements For High Frequency Power Transformers?

High frequency transformers can work efficiently only if two important conditions are fulfilled – reliability and electromagnetic compatibility. Reliability has always been paid attention to, while electromagnetic compatibility has come into focus only in recent years because of the increasing awareness towards environmental protection. Reliability can be defined by the specific conditions of usage on which the high frequency power transformers can normally work. The temperature in which the transformer works is one of the very important factors to be considered. For some soft magnetic materials, the Curie point is very low, which is why they are very sensitive to temperature. One such example is manganese zinc sift ferrite that has a very low Curie point, which is why it’s working temperature is very limited.

Continue reading